Spectacular Visualizations of Brain Scans Enhanced with 1,750 Pieces of Gold Leaf

scientific art

Self Reflected, 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The entire Self Reflected microetching under violet and white light. (photo by Greg Dunn and Will Drinker)

Anyone who thinks that scientists can’t be artists need look no further than Dr. Greg Dunn and Dr. Brian Edwards. The neuroscientist and applied physicist have paired together to create an artistic series of images that the artists describe as “the most fundamental self-portrait ever created.” Literally going inside, the pair has blown up a thin slice of the brain 22 times in a series called Self-Reflected.

Traveling across 500,000 neurons, the images took two years to complete. Funded by the National Science Foundation, Dunn and Edwards developed special technology for the project. Using a technique they’ve called reflective microetching, they microscopically manipulated the reflectivity of the brain’s surface. Different regions of the brain were hand painted and digitized, later using a computer program created by Edwards to show the complex choreography our mind undergoes as it processes information.

After printing the designs onto transparencies, the duo added 1,750 gold leaf sheets to increase the art’s reflectivity. The astounding results are images that demonstrate the delicate flow and balance of our brain’s activity. “Self Reflected was created to remind us that the most marvelous machine in the known universe is at the core of our being and is the root of our shared humanity,” the artists share.

Self Reflected fine art prints and microetchings are available for purchase via Dunn’s website.

Self Reflected is an unprecedented look inside the brain.

science art

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The parietal gyrus where movement and vision are integrated. (photo by Greg Dunn and Will Drinker)

science art

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The brainstem and cerebellum, regions that control basic body and motor functions. (photo by Greg Dunn and Will Drinker)

An astounding achievement in scientific art, the artists applied 1,750 leaves of gold to the final microetchings.

science art

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The laminar structure of the cerebellum, a region involved in movement and proprioception (calculating where your body is in space).

scientific art

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The pons, a region involved in movement and implicated in consciousness. (photo by Greg Dunn and Will Drinker)

scientific art

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. Raw colorized microetching data from the reticular formation.

scientific art

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The visual cortex, the region located at the back of the brain that processes visual information.

scientific art

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The thalamus and basal ganglia, sorting senses, initiating movement, and making decisions. (photo by Greg Dunn and Will Drinker)

science art

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The motor and parietal cortex, regions involved in movement and sensation, respectively. (photo by Greg Dunn and Will Drinker)

scientific art

Self Reflected, 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The entire Self Reflected microetching under white light. (photo by Greg Dunn and Will Drinker)

science art

Self Reflected (detail), 22K gilded microetching, 96″ X 130″, 2014-2016, Greg Dunn and Brian Edwards. The midbrain, an area that carries out diverse functions in reward, eye movement, hearing, attention, and movement. (photo by Greg Dunn and Will Drinker)

This video shows how the etched neurons twinkle as a light source is moved.

Interested in learning more? Watch Dr. Greg Dunn present the project at The Franklin Institute.

Dr. Greg Dunn: Website | Facebook | Instagram

My Modern Met granted permission to use photos by Dr. Greg Dunn.

Related Posts

Comments

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Recent Stories